Warning: mkdir(): No space left on device in /www/wwwroot/New.4.com/func.php on line 127

Warning: file_put_contents(./cachefile_yuan/tsxingyuan.com/cache/0b/751ea/606f9.html): failed to open stream: No such file or directory in /www/wwwroot/New.4.com/func.php on line 115
GPT-5是口袋博士?諾獎得主哈薩比斯怒懟奧特曼:博士級AI純屬扯淡!

飛短流長網飛短流長網

GPT-5是口袋博士?諾獎得主哈薩比斯怒懟奧特曼:博士級AI純屬扯淡!

新智元報道

編輯:KingHZ 艾倫

【新智元導讀】諾獎得主哈薩比斯直擊AI痛點:當前LLM遠非博士級智能,僅在特定領域閃光,卻缺乏全麵性和一致性。真正的AGI,還需1-2項關鍵突破,等待有5-10年。

目前的博士級人工智能就是扯淡!

實屬沒想到,諾獎得主、穀歌DeepMind CEO哈薩比斯(Demis Hassabis)竟公然怒懟奧特曼。

在最近的訪談中,哈薩比斯公開表示,把如今的LLM稱作「博士級智能」,純屬無稽之談!

它們並非真正的博士級智能——雖然具備某些博士水平的能力,但整體上並不具備全麵性。

而真正的通用智能,應該是在所有領域都能達到博士級別的全麵能力。

真正的通用人工智能不會犯低級錯誤,現在的AI並不具備持續推理、適應和學習的能力。

哈薩比斯認為:目前,還大概率還缺失1-2項關鍵突破,距離真正的「博士級智能」仍有5到10年之遙。

哈薩比斯對「博士級AI」的批評、對AGI本質能力的真知灼見,頗有市場:

左右滑動查看

不過,他對 AGI 到來時間的判斷,未必準確。

除了對AGI路線的探討,在All-In峰會上,哈薩比斯先回憶了諾獎時刻,之後係統闡述了他對世界模型、機器人、科研加速、能耗與效率的最新判斷:

Genie 3把一段文字變成可實時交互的「世界」,Gemini正在成為Alphabet的「AI引擎」,而真正具備創造力與一致性的AGI,仍需關鍵突破與時間磨礪。

AI天才執掌DeepMind

AlphaFold助力摘諾獎

哈薩比斯,4歲成為國際象棋天才,2023年因對AI的貢獻被英國皇室冊封為爵,2024年獲得諾貝爾化學獎。

因蛋白質結構預測,穀歌DeepMind的哈薩比斯、John M.Jumper共享了1/2的諾獎

但是在正式公布前的十分鍾,他本人才得到獲獎通知,根本來不及消化這個消息,整個人都有點懵。

隨後,在瑞典參加為期一周的頒獎典禮,更是精彩絕倫,包括與王室成員的交流,每項安排都讓他驚歎。

這項延續120年的榮譽傳統中,最讓人震撼的環節是組委會有個特殊安排——他們會從保險庫中取出諾貝爾獎曆史簽名簿。

哈薩比斯體驗了終生難忘的人生高光時刻:

將自己的名字與居裏夫人、愛因斯坦等曆史上所有諾獎得主簽在同一本名冊上。

哈薩比斯作為DeepMind的CEO,是穀歌AI的掌舵人。

為了加入發展AI,穀歌和Alphabet旗下的AI團隊(包括原來的DeepMind)進行了整合,成立了現在的穀歌DeepMind。

哈薩比斯把新DeepMind描述為整個穀歌和Alphabet的「發動機」。

DeepMind負責Gemini、Gemma、Veo等生成式AI模型的開發,同時負責以AlphaFold為代表的科學項目研究。

Gemini是穀歌的核心AI模型,應用到穀歌搜索、Gmail等多個產品。

他領導的全部人員大約5000人,超過80%都是工程師或博士研究員。

穀歌開始做Gemini時,就堅持多模態——能看圖、聽音頻、看視頻,也能輸出多種形式。

要走向通用人工智能,係統不能隻懂語言和抽象,還得懂身邊的物理世界;這是機器人之所以難、智能眼鏡類助手之所以關鍵的原因。

他這次介紹了最新推出的世界模型Genie 3、穀歌「新安卓」Gemini Robotics以及爆火的「Nano Banana」

前兩項落到一個共同方向:讓AI真正理解並操控物理世界。

DeepMind在推進把Gemini Robotics做成跨機器人平台的「準操作係統層」,可以把它理解成機器人的「androids」。

哈薩比斯認為機器人還處在偏早期的階段,但接下來一兩年裏,大概率出現「Aha時刻」。

而未來幾年,通用模型更強、更穩健、更懂物理世界的細節,足以完全支撐機器人在物理世界的操控能力。

關於未來創意工作將如何發展,哈薩比斯表示:頂尖的創意者,依然會主導引人入勝的體驗和動態故事線;他們可能變為「世界觀的編輯」,負責引導和整合眾人的集體創造力。

AGI路在何方?

AI的科學應用是哈薩比斯最關心的方向。

他之所以把整段職業生涯押在AI上,就是為了用它加速科學發現、改善人類健康。

如果以正確方式構建AGI,它會成為終極的科學工具。

過去幾年,DeepMind已經展示了不少路徑:最出名的是AlphaFold,但穀歌也把AI用在材料設計、受控核聚變裝置的等離子體控製、天氣預報、甚至奧數級別的數學問題上。

相同範式的AI係統,加上一點任務定向的微調,就能在很多複雜領域裏起作用。

哈薩比斯認為AI加速科學發現才剛剛開始。

當然,目前還缺一塊:真正的「創造力」。

在給定命題的前提下,今天的AI能去證明、去求解,但還談不上自己提出全新的猜想、假說或理論。什麽時候它能自主提出好的問題,那也許才是一項關鍵的裏程碑測試。

什麽是「創造力」?

哈薩比斯認為:那是国产AV蜜桃网站常為之喝彩的「直覺式躍遷」——曆史上的頂尖科學家和藝術家都會做的那種跨越。

也許,創造力靠的是類比,靠把看似無關的事物勾連起來。

心理學和神經科學對人類如何做到這一點各有理論,但一個可操作的測試是:

把一套現代AI的知識截斷在1901年,看看它能不能在1905年「自己想出」狹義相對論那樣的理論。

如果能,那就說明人類觸及到了真東西,也許AGI近在眼前。

再舉個例子:十年前,AlphaGo不僅擊敗了圍棋世界冠軍,它還下出「神之一手」——第二局那手著名的「第37手」。

但問題是:AI能不能不僅發明新策略,而是「發明一款像圍棋那樣優雅、耐玩、審美上同樣動人的遊戲」?

答案目前是否定的。這正是距「通用」的短板:真正的AGI,也該能做到這種層麵的創造。

那具體還缺什麽?

Anthropic的Dario、OpenAI的奧特曼認為,AGI不久就能到來。

哈薩比斯更謹慎。他認為核心在於:国产AV蜜桃网站能不能複現人類最優秀科學家那種「直覺式躍遷」,而不隻是循序漸進的改良?

偉大科學家和優秀科學家的差別,不在於基本功,而在於創造力:他們能從別的學科裏捕捉到某種模式,把它類比、遷移到當前難題上。

哈薩比斯相信AI終會做到這一點,但如今在推理思維方式上,AI仍欠火候,難以支撐這種突破。

另一個短板是「一致性」。

奧特曼等人稱目前AI已達到「博士級智能」,哈薩比斯認為並非如此。

在若幹子任務上,他們已達到「博士水平」,但並不意味著「全麵博士級」。

而「通用智能」恰恰意味著在各個維度都能穩定地達到那個水準。事實是,国产AV蜜桃网站都見過:

隻要換個提問方式,當下的聊天機器人會在高中數學、甚至簡單計數上犯低級錯。

對真正的AGI來說,這種情況不該發生。距離能完成上述能力的AGI, 哈薩比斯認為還有大概5到10年。

除此之外,AI還缺「持續學習」的能力:能在線吸收新知識、及時調整行為。

也許,Scaling Law會繼續帶來部分改進。

但如果要下注,哈薩比斯認為還需要一兩次關鍵性的原創突破,而這些突破很可能會在未來五年內出現。

破解科研難題,AI4S持續發力

除了已經取得大量重磅成果摘得諾獎的AlphaFold外,AI也將助力提高能源效率,解決自身需要的海量能源帶來的衍生問題。

AlphaFold這類混合模型,是AI未來發展方向

AlphaFold是一種混合模型。

所謂混合模型,是指同時使用概率性模型和確定性模型。

概率性模型是目前大模型普遍都在使用的基於概率預測下一個Token的模式,而引入確定性模型是大模型取得關鍵進步的下一步方向。

確定性模型遵循固定的邏輯算法,相同的輸入必然得到相同的輸出。

例如在大模型中引入真實世界的物理規則與化學規則,就是確定性模型。

哈薩比斯也在采訪中,詳細介紹了AlphaFold這個混合模型。

AlphaFold有一個學習組件,也就是概率組件,基於神經網絡和Transformer等技術,能從提供的任何可用數據中學習。

但在生物學和化學領域,很多時候數據並不充足。因此,必須將一些已知的化學和物理規則內置到模型中。

在AlphaFold中,需要設定原子間的鍵角,並確保模型理解原子不能重疊等基本物理約束。

鍵角有約束規則

理論上,模型可以自己學會這些,但這會極大浪費模型的學習能力。

所以,將這些規則作為約束條件直接加入,是更高效的做法。

哈薩比斯也表示,無論是AlphaGo還是其他混合係統,其關鍵和難點都在於如何將學習係統與一個更偏向於人工設計的、定製化的係統完美結合,讓它們協同工作。這其實相當有挑戰性。

他認為,最終的目標是,當通過混合係統取得進展後,應將這些經驗反哺並整合到學習組件中。

為了更具體地說明這點,哈薩比斯舉了從AlphaGo到AlphaZero的例子:

這有點像国产AV蜜桃网站對 AlphaZero 所做的改進。

AlphaZero是AlphaGo的一個更通用的版本,AlphaGo內部包含了一些針對圍棋的特定知識。

但在 AlphaZero中,国产AV蜜桃网站移除了這些定製規則,包括国产AV蜜桃网站用來訓練的人類棋譜數據,而是讓它從零開始,通過自我對弈進行學習。

最終的結果是,它不僅能下圍棋,還能學會任何其他的棋類遊戲。

AI加速藥物發現

哈薩比斯仍在管理Isomorphic。

這家公司是DeepMind的衍生公司,建立在AlphaFold蛋白質折疊預測的突破之上,致力於革新藥物發現。

了解蛋白質結構隻是藥物發現過程的第一步,以便後續解決問題,如設計出能與蛋白質靶點精準結合且無副作用的化合物。

哈薩比斯表示,在未來十年內,有望將藥物發現的周期從數年甚至十年,縮短到幾周乃至幾天。

Isomorphic正在構建平台,禮來(美國大型跨國醫藥公司)、諾華(英國大型跨國製藥公司)也將深度參與其中。

Isomorphic自己內部也同步開展了藥物研發項目,預計明年即可進入臨床前階段。

Isomorphic目前正在把重心放在癌症和免疫學等領域,並與美國MD安德森癌症中心這類全球頂尖機構進行科研合作。

與此同時,DeepMind也在著力研究AlphaFold模型的更先進版本,讓模型不僅能夠理解蛋白質相互作用,還能理解更多內容,從而助力藥物研發。

AI能源需求龐大,但為優化能源效率貢獻更大

隨著大模型參數不斷膨脹,訓練和推理帶來的巨大能源消耗也越來越成為一個萬眾矚目的問題。

麵對指數級增長的能源需求曲線,哈薩比斯解釋了DeepMind是如何應對的。

由於背靠穀歌這個全球最龐大的AI應用場景,極高的效率、極低的延遲和極低的服務成本是對模型的迫切要求。

DeepMind使用蒸餾等技術來提高模型效率,在同等性能下,效率提升了幾十倍。

然而,由於大家仍在探索AGI的路上,節約下來的能源又被投入到前沿模型研發上了。

當然,哈薩比斯也指出,AI係統為解決能源和氣候變化問題帶來的貢獻,將遠遠超過其自身的消耗。

可能的貢獻包括優化電網係統、設計具有新特性的材料,以及提升新能源的效率等。

未來十年,人工智能將在很大程度上幫助国产AV蜜桃网站解決這些重大挑戰,其貢獻將遠超今天的能源消耗。

哈薩比斯認為,十年後若AGI降臨,將開啟一場科學的黃金時代,也將是全新的文藝複興。

參考資料:

http://www.youtube.com/watch?v=Kr3Sh2PKA8Y

http://x.com/vitrupo/status/1966752552025792739

http://x.com/rohanpaul_ai/status/1966950863685157368

讚(2220)
未經允許不得轉載:>飛短流長網»GPT-5是口袋博士?諾獎得主哈薩比斯怒懟奧特曼:博士級AI純屬扯淡!